Ball screw calculation
2021/04/27 categories:Mechanical design| tags:Mechanical design|
Buckling load
Item | Formula | Value | Unit |
---|---|---|---|
Distance between installations | $ l_a = $ | $ mm $ | |
Young’s modulus | $ E = $ | $ N/mm^2 $ | |
Thread shaft root diameter | $ d_1 = $ | $ mm $ | |
Coefficient depending on the mounting method | $ \eta = $ | ||
Moment of inertia of area | $ I=\frac{\pi}{64}{d_1}^4 = $ | $ mm^4 $ | |
Buckling load | $ P_1 = $ | $ N $ |
Allowable tensile compressive load
Item | Formula | Value | Unit |
---|---|---|---|
Allowable tensile compressive stress | $ \sigma = $ | $ N $ | |
Allowable tensile compressive load | $ P_2 = \sigma \frac{\pi}{4} {d_1}^2 = $ | $ N $ |
Efficiency calculation
Item | Formula | Value | Unit |
---|---|---|---|
Lead | $ Ph = $ | $ mm $ | |
Ball center diameter | $ dP = $ | $ mm $ | |
Coefficient of friction | $ \mu = $ | ||
Contact angle | $ \alpha = $ | $ \deg $ | |
Lead angle | $ \beta = tan^{-1} \frac{Ph}{\pi d_P} = $ | $ \deg $ | |
Positive efficiency | $ \eta_1 = \frac{(sin \alpha - \mu \cdot tan \beta)}{sin \alpha + \frac{\mu}{tan \beta}} = $ | ||
Reverse efficiency | $ \eta_2 = \frac{sin \alpha - \frac{\mu}{tan \beta} }{sin \alpha + \mu \cdot tan \beta} = $ |
Calculate thrust from torque
Item | Formula | Value | Unit |
---|---|---|---|
Torque | $ T_1 = $ | $ Nm $ | |
Thrust | $ F_1 = \frac{2 \pi \cdot \ \eta_1 \cdot T_1}{Ph \times 10^{-3}} = $ | $ Nm $ |
Calculate torque from thrust
Item | Formula | Value | Unit |
---|---|---|---|
Thrust | $ F_2 = $ | $ Nm $ | |
Torque | $ T_2 = \frac{Ph \cdot \eta_2 \cdot F_2}{2 \pi} = $ | $ Nm $ |