Air cylinder calculation
2021/01/02 categories:Mechanical design| tags:Mechanical design|Air Cylinder|
I made a calculation form related to an air cylinder.
Thrust
Item | Formula | Value | Unit |
---|---|---|---|
Inner diameter | $ D $ | $ mm $ | |
Rod diameter | $ d $ | $ mm $ | |
Pressure | $ P $ | $ MPa $ | |
Thrust on the stretch side | $ F1 = \frac{\pi}{4} \times D^2 \times P $ | $ MPa $ | |
Thrust on the contraction side | $ F2 = \frac{\pi}{4} \times (D^2 - d^2) \times P $ | $ MPa $ |
Speed
Item | Formula | Value | Unit |
---|---|---|---|
Flow rate | $ Q $ | $ mm/s $ | |
Extension speed | $ v1 = \frac{1000000 \times Q}{60 \times \frac{\pi}{4} \times D^2} $ | $ mm/s $ | |
Shrinkage speed | $ v2 = \frac{1000000 \times Q}{60 \times \frac{\pi}{4} \times (D^2 - d^2)} $ | $ mm/s $ |
Flow rate
Item | Formula | Value | Unit |
---|---|---|---|
Temperature | $ t $ | $ ℃ $ | |
Sonic conductance | $ C $ | $ \frac{dm^3}{s \cdot bar} $ | |
Critical pressure ratio | $ b $ | $ $ | |
Upstream pressure | $ P_1 $ | $ MPa $ | |
Downstream pressure | $ P_2 $ | $ MPa $ | |
Flow rate (choked flow) | $ Q_c = 600 \times (P_1 + 0.1) \sqrt{\frac{293}{273+t}} $ | $ L/min (ANR) $ | |
Flow rate (subsonic flow) | $ Q_s = 600 \times (P_1 + 0.1) \sqrt{ 1 - \left(\frac{ \frac{P_2+0.1}{P_1+0.1} - b }{ 1-b }\right)^2 } \sqrt{ \frac{293}{273+t} } $ | $ L/min (ANR) $ |